
The Lestrade Type Inspector – Manual and
Discussion

M. Randall Holmes

June 5, 2020

version: 8/2/2019 edits reflecting later changes in Lestrade (but this is still
talking about an early stage of the development of Lestrade); 4/3/2015 10:15
AM various updates

Contents

1 Introduction 2

2 Access to the software 2

3 Commands which can be given in the Lestrade interface 3

4 The input language 4

5 Worlds 6

6 Declaration commands 8

7 Type checking and definition expansion 10

8 Motivation 11

9 Some Remarks 12

10 Possible further features 14

1

11 Some sample log files 14
11.1 Russell’s paradox . 14
11.2 Logic declarations and proofs 21
11.3 Working on Landau. 41

1 Introduction

To begin with, the name is a bit of fun. I am Holmes, I already have a
theorem prover called Watson; my son suggested Lestrade. I hope that I
may be forgiven.

The system presented here is a variant of Automath. The most obvious
difference is that the user never enters a λ-term or dependent type. I origi-
nally thought that this represented a greater difference from Automath than
it actually does.1

This file only documents the version lestrade basic.sml without the
new rewriting features.2 All but one of the source files on the web page will
run with the basic version. I’m updating this file in summer 20163 to remove
anachronisms, and without trying to document the new rewriting commands.

2 Access to the software

Lestrade is contained in a Moscow ML 2.01 program lestrade.sml. When
this has been compiled, loaded and opened, type interface <filename> at
the ML command line to reach the Lestrade interface (a log will be recorded
to <filename>.lti. The command readfile <file1> <file2>, issued
at the ML command line, will clear the Lestrade context then execute
the Lestrade commands in <file1>.lti and log those commands and any
commands the user subsequently types to <file2>.lti. Readfile and in-
terface are ML functions, not Lestrade commands. It is important to end
your sessions with the Lestrade interface with quit (starting interface or

18/2/19: Lestrade now does support user entry of λ-terms and dependent types, and
these features are very useful (though instructively rather restricted), It is still worthy of
note that use of these features can be avoided.

2This version is no longer supported or distributed. But this is still an accurate de-
scription of the viewpoint of this old manual.

3and further in summer 2019

2

typing quit in the interface does not clear your declarations; only issuing a
readfile does that.) If you crash out of the interface, the Cleanup(); com-
mand will close input and output files which otherwise might be damaged.
The versiondate(); command will tell you what version of Lestrade you
have. The setmargin <integer> command will allow you to set the margin
at which lines break in the (marginally) pretty-printed display. The Lestrade
log files with extension .lti are readable text files; open them with a text
editor. It is very important to end an .lti file with the line quit! It is
also very important to close the interface with quit before closing the ML
window.

3 Commands which can be given in the Lestrade

interface

The explanations of the commands are for reference; the terms used are
explained in following sections.

quit ends the interface session and closes the log file. The Lestrade
context is not affected by this command .

clearall resets the Lestrade context to its original state.
open Opens a new world with index one higher than the previous cur-

rent world; this becomes the current world and the previous current world
becomes the parent world. With an argument, a saved world named by the
argument may be opened. For details, see the new paper.

close Deletes the current world (unless it is world 1, which one cannot
close). The previously parent world becomes the new current world, and the
world with index one lower becomes the new parent world.

clearcurrent deletes all declarations from the current world. If an ar-
gument is supplied, it may introduce declarations from a saved world at that
level: for details see the new paper.

showdec <ident> shows the type of the identifier <ident> if it is de-
clared. The type will include information about the value of a defined ab-
straction.

showall shows all declarations, sorted by world, most recently declared
in each world at the top.

3

showrecent shows the declarations in the current world and the parent
world.

declare <ident> <type> declares the fresh identifier <ident> with en-
tity type <type> in the current world (terminology explained below). This
declares <ident> as primitive.

postulate <ident> <arglist> : <type> declares the fresh identifier
ident in the parent world as a primitive abstraction of type determined
by the arguments in <arglist>, which must each be primitive identifiers
declared in the current world (not any lower-indexed world), followed by
commas if they represent abstractions [a last abstraction argument doesn’t
require a comma; any argument can be followed by a comma and sometimes
a comma is needed before an abstraction to prevent reading it as an infix],
and must appear in the order in which they were declared, and include any
primitive identifiers declared in the current world on which <type>, an entity
type, depends. It is possible for <arglist> to be empty: in this case the
effect of the command is to declare a variable in the parent world, a new
constant from the standpoint of the current world.4

define <ident> <arglist> : <value> declares the fresh identifier ident
in the parent world as a defined abstraction of type determined by the ar-
guments in <arglist> and the computed type of <value>. The arguments
must each be primitive identifiers declared in the current world (not any
lower-indexed world), followed by commas if they represent abstractions [if
not final; same remarks about commas after argument as under postulate],
and must appear in the order in which they were declared, and include any
primitive identifiers declared in the current world on which <value>, an entity
term, or the computed type of <value> depends. It is possible for <arglist>
to be empty (this is how entity definitions are given: a zero arity abstraction
identifier is always read as an entity term of the appropriate type, the null
argument list being supposed supplied).

4 The input language

An identifier may contain upper case letters, lower case letters, numerals
or special characters. Any of these may appear initial to an identifier. An

4The original shape of this command was construct, changed to postulate in 2019.
This change has been made everywhere in all Lestrade documents.

4

upper case letter appearing in an identifier will be terminal or followed by a
lower case letter or numeral. A lower case letter appearing in an identifier
will be terminal or followed by a lower case letter or numeral. A numeral
appearing in an identifier will be terminal or followed by a numeral. A special
character appearing in an identifier will be terminal or followed by another
special character.

A token is an identifier or one of the special tokens , : (a comma or a
colon) or an open or close parenthesis.

A command or expression of the input language consists of tokens and
spaces. The only function of the spaces is to serve to separate tokens from
one another when necessary. The first token in a command line will of course
be the command name.

All declared abstractions have arity. An entity term of the input language
will either be a single identifier of entity type or an identifier of abstraction
type followed by an argument list with number of items determined by the
arity of the abstraction. Notice that an abstraction identifier of zero arity
is read as a full entity term by itself. In the latest version, the parser has
been upgraded to allow infix notation and also argument lists of a more
usual kind. Terms may be enclosed in parentheses. Terms written at1 . . . tn
(in Polish notation; this is still accepted, with the freedom to put commas
after arguments as desired and the positive need to place them before and
after abstraction arguments) can also be written a(t1, . . . , tn) [argument list
enclosed in parentheses and (optionally) arguments separated by commas] or
t1at2 . . . tn as long as n is at least 2 and t1 is of entity type. In the infix/mixfix
notation, the arguments after the abstraction may optionally be separated
by commas but cannot be enclosed in parentheses as a block (unless of course
there is only one of them). Any abstraction which occurs finally or followed
by a comma, colon or close parenthesis is to be interpreted as an abstraction
argument, and takes no arguments of its own (either as a prefix or infix).
Use of a comma after an abstraction argument is usually obligatory, except
at the end of a term or before colons or close parentheses. Abstractions of
arity 1 bind more tightly than infixes; otherwise all precedences are equal
and infix terms group to the right as in APL, except as modified by use of
parentheses. Abstraction identifiers are not displayed or read as followed by
infixes. It is important to note that a parenthesis immediately following an
abstraction used as a prefix operator will be interpreted as enclosing the list
of arguments, not as enclosing the first argument or an initial subterm of the

5

first argument: if you want to parenthesize the first argument in an
argument list, you must also parenthesize the entire argument list.

The liberalized syntax does not apply to what appears to the left of the
colon in a define or postulate command: this will be a declared abstrac-
tion name followed by a list of identifiers optionally separated with commas
(abstraction arguments in non-final position must be followed by commas
and it is wise to precede them with commas as well), and the argument list
will not be enclosed in parentheses.

An argument list is a list of items which are either abstraction identifiers
of positive arity followed by a comma [unless final] or full entity terms (which
may or may not be followed by a comma). The comma is a device to pre-
vent one from reading the abstraction identifier appearing as an argument
from taking following terms up as arguments of its own; in the new version
a comma before an abstraction argument may also be obligatory to avoid
reading it as an infix. It is probably a good idea to separate arguments with
commas if in any doubt.

An entity type is one of obj, prop, type by itself, or else that or in

followed by an entity term. An entity type is well-typed iff it is obj, prop or
type, or it is of the form that P where P type checks with type prop, or it
is of the form in T , where T type checks as of type type.

This section gives mostly syntactical information about well formed entity
terms and types; further issues of type enter into whether such terms are
accepted.

5 Worlds

The Lestrade context consists of a list of worlds5 indexed by natural numbers
starting at 0. Each of these is a list of declarations. Initially, there is world
0 and world 1, both empty, and the clearall command restores this state.
The initial state is also restored when the readfile command is called from
the ML interface.

There are always at least two worlds. The highest indexed world, which
we will call world i+ 1, is called the current world, and world i is called the
parent world.

5What were called worlds are now called moves (comment in 2019).

6

The open command creates world i + 2 with an empty declaration list.
After this command, world i + 2 is the current world and world i + 1 is the
parent world.

The close command deletes world i + 1, unless i = 0, in which case it
reports an error. World 1 cannot be closed. All declarations in a closed world
are lost. After this command, world i is the current world and world i− 1 is
the parent world.

The clearcurrent command empties world i+1 of declarations but does
not close it.

All items declared in any world are declared in the context and can be
used in terms and types. An item cannot be declared in more than one world.

If one thinks of these as possible worlds with variable objects in them, one
should note that when abstractions are declared they actually depend only
on subworlds (the primitives declared in their argument lists). The entire
context of world i+1 in a nontrivial proof is very likely to be an inconsistent
collection of entities and abstractions; it is formally easier for the prover to
view it as a whole, but in any particular construction one is likely to be
postulating only a small part of it.

One should think of objects declared in the current world as variable or
arbitrary objects, of the sort which are postulated for the sake of argument.
One cannot assume that one knows anything about an object declared in the
current world, except insofar as the supposed existence of an object postu-
lated later may tell you something about it. Abstractions that we declare
using the postulate or define command are supposed to exist for all ob-
jects of the appropriate types (and note that these abstractions are declared
in the parent world; they are not hypothetical, except relative to worlds of
even lower index). Objects in the parent world or worlds of lower index are
objects to whose existence we are more firmly committed – relatively. When
we close the current world, the parent world becomes current world to the
even lower indexed new parent world. Declaration of abstractions of arity
zero has the effect of declaring genuine (relative) constants of entity type in
the parent world.

A new feature outlined in the new paper allows one to assign names to
worlds and save them. When a new world is opened, it can optionally be
assigned a name (an argument to the open command). If no argument is
supplied, a world being opened as world i + 1 gets the numeral i + 1 as its
name. The save command takes an argument (if no argument is supplied,

7

the world is saved with its current name); a world cannot be saved with
its default numeral name [or not directly; this can happen as a side-effect,
though]. The effect of the save command is to change the name of the current
world to the argument of the save command, then save the current world with
its attached name (its actual address is the full list of names for all the worlds
up to i + 1, giving a tree structure) and save each world with index ≤ i + 1
with its current name [of course the internal index being the full list of names
as indicated]. The clearcurrent command can also take the name of a saved
version of the world at the current level as an argument, and load that version
instead of clearing the world. If either open or clearcurrent is issued with an
argument which is not the name of an available saved world, an empty world
is created with that name. Commands foropen and forclearcurrent are
provided to show lists of names of saved worlds accessible to the open or
clearcurrent command in the current context.

6 Declaration commands

The command declare x τ declares x in the current world with type τ , if
x is a fresh identifier (not already declared in any world) and τ is an entity
type which type checks correctly. An identifier declared by this command is
a primitive identifier.

The command postulate x t1 . . . tn : τ will first check that x is a fresh
identifier, that each term ti is a primitive entity identifier or a primitive
abstraction identifier of positive arity followed by a comma [unless final],
that all of these are declared in the current world, and that the ti’s appear in
the order in which they were declared [it is possible for there to be no ti’s at
all]. It computes types τi for each ti. Each primitive identifier declared in the
current world on which τ or any of the τi’s depends must appear as one of the
ti’s. This is enforced by type checking the entity type τ in an environment in
which only the ti’s are declared in the current world (including type checking
each of the ti’s themselves) after expanding all defined abstractions appearing
in τ and declared in the current world (details of this expansion discussed
below). If all these checks are passed, x is declared in the parent world (not
the current world!) with abstraction type [(t∗1, τ

∗
1), . . . , (t∗n, τ

∗
n) → (---, τ ∗)],

where the star represents the operation of replacing each ti whereever it
appears with an identifier t∗i taken from a fresh namespace unique to this

8

type notation (achieved by affixing a numerical index). Note that τ ∗ is also
changed by the indicated expansion of defined notions declared in the current
world. An identifier declared by this command is a primitive identifier.

The postulate command with an empty argument list simply declares a
variable of the stated sort in the parent world (which must type check in the
parent world).

The command define x t1 . . . tn : D will first check that x is a fresh
identifier, that each term ti is a primitive entity identifier or a primitive
abstraction identifier of positive arity followed by a comma [unless final],
that all of these are declared in the current world, and that the ti’s appear
in the order in which they were declared. It computes types τi for each ti.
Each primitive identifier declared in the current world on which the entity
term D or its type τ or any of the τi’s depends must appear as one of the
ti’s. This is enforced by type checking D in an environment in which only
the ti’s are declared in the current world (including type checking each of the
ti’s themselves) after expanding all defined abstractions appearing in D and
in τ and declared in the current world (details of this expansion discussed
below). If all these checks are passed, x is declared in the parent world (not
the current world!) with abstraction type [(t∗1, τ

∗
1), . . . , (t∗n, τ

∗
n) → (D∗, τ ∗)],

where the star represents the operation of replacing each ti whereever it
appears with an identifier t∗i taken from a fresh namespace unique to this
type notation (achieved by affixing a numerical index). Note that D∗ is
also affected by the expansion of all defined abstractions declared in the
current world. An identifier declared by this command is a defined and not
a primitive identifier.

Execution of any of these commands will be followed by the display of the
resulting type declaration, if it succeeds. The output language of Lestrade is
less parsimonious than the input language: argument lists are delimited with
parentheses and separated with commas [after the parser upgrade, the user is
permitted but not required to write argument lists thus], and dependent types
are displayed as shown here. In the latest version (with the parser upgrade)
all arity 2 operators are displayed as infix operators, with all parentheses
shown. We believe that bits of output language will now parse as input if
they contain no anonymized variables and no lambda-terms or dependent
type notations. Further (version of 3/21/2015) the display of commands and
declarations is now indented in a way determined by the number of worlds
there are (the more levels of supposition we have, the more we are indented).

9

This should help the reader to understand the scope of identifiers.

7 Type checking and definition expansion

We have already indicated above how entity types are type checked (subject
to information about how entity terms are type checked which will be given
here).

An undeclared identifier will trigger type check failure.
An entity identifier (declared using the declare command) will be as-

signed the type which has been declared for it (in any world).
An entity term at1, . . . , tn, where a is an abstraction identifier of arity n

and each ti is either an entity term or an abstraction identifier of positive arity
followed by a comma [unless final], will be typed by the following algorithm:
let [(a1, α1), . . . , (an, αn) → (x, τ)] be the declared type of a (whether the
value x is an entity term or --- is immaterial). Let [(t1, τ1), . . . , (tn, τn)]
be the list of ti’s with their computed types. If t1 does not match α1,
the type check fails and the term cannot be typed. Otherwise type check
[(t2, τ2), . . . , (tn, τn)] against [(a2, α

∗
2), . . . , (an, α

∗
n)→ (x∗, τ ∗)], where the star-

ring denotes the operation of replacing a1 with t1 throughout. When the
process terminates with matching the empty list against [x∗, τ ∗], return τ ∗

as the type (notice that this will happen as the first step if a is of arity
0). Type matching does include expanding defined abstractions if necessary.
A term ti which is of the form (abstraction identifier followed by a comma
[unless final]) is of course assigned its own abstraction type as declared (and
type check fails if it is not defined). Abstraction types match if they can be
identified up to changes of name of bound variables.

An entity term at1, . . . , tn where a is a defined abstraction with type
[(a1, α1), . . . , (an, αn) → (D, τ)] will expand out to the result of replacing
each ai with ti in D. If an abstraction identifier of positive arity appears
followed by a comma [or final] in an argument list, it expands (if this is forced)
to its declared type, which is in effect a λ-term. When a λ-term replaces a
variable in applied position in a definition expansion, the obvious substitution
is carried out. Lestrade can be forced to do this (explicit β-reduction does
happen). Substitutions into λ-terms force a change of namespace of its bound
variables as in the postulate command if the substitution makes any change
in the term. These changes in namespace prevent bound variable capture.

10

8 Motivation

obj is intended to represent the realm of untyped mathematical objects (if
one were implementing ZFC, all one’s official objects would live here). prop
is intended to represent the realm of propositions. type is intended to be
inhabited by sorts of typed mathematical object. that P is intended to
represent the type of proofs of (evidence for) the proposition P . in T is
intended to be inhabited by objects of the sort denoted by the term T . It is
useful to note that the type prop and the type constructor that have exactly
the same relation to each other that type does to in: the difference is entirely
one of intent. The objects of all the types considered in this paragraph are
referred to as entities. 6

The other objects handled by Lestrade are the functions or abstractions
declared with postulate and define. Abstractions are treated with some
caution by Lestrade. The user is not allowed to type λ-terms (or dependent
types) herself; these are always generated by the system. No entity actually
is an abstraction: the user must always declare a construction (making some
sort of axiomatic commitment) to involve an abstraction in the definition
of an entity (a proof for example). But Lestrade allows one to formulate
and adopt such commitments quite freely: one can for example implement
quantification over abstraction types quite readily. This is a higher order
logical framework.7

The relationship between worlds is best described in this way. The parent
world and the lower indexed worlds represent objects to which one is currently
committed as fixed objects. The objects in the current world are variable or
arbitrary objects, which are allowed to vary freely in their declared types. A
postulate or define command allows one to write new terms at1 . . . tn in the
current world, which vary as the ti’s vary; the denotation of the identifier a in
the parent world is a new fixed (not varying) object obtained by abstraction
from this complex variable term.

Propositional and first-order logic (and higher-order logic as well) can be
implemented using the Curry-Howard isomorphism. This is best discussed
along with sample declarations. A constructive logic of course can be imple-

6In 2019, what we here call entities are called objects, and the term entity is used to
subsume all sorts discussed in Lestrade. Note above that the word object has been used
in this general sense in this text.

7In 2019, what we here call functions or abstractions are instead called constructions.

11

mented in this way, but so can classical logic, just as it was in Automath. It
is worth noting that this system generates and maintains proof objects.

There is a philosophical program behind this software. I suggest implicitly
that one can take the notion of a variable or arbitrary object seriously: it
works in this formalism. This allows a function to be understood in an old-
fashioned way as abstracted from a dependent variable expression or a rule. A
function is not an infinite table of values which can only be understood after
all of its values are understood. Similarly, a universally quantified statement
is not an infinitary conjunction which can only be understood after all of
its conjuncts are understood (impredicativity is not a real difficulty). A
further point is that it is strongly suggested that mathematics (even classical
impredicative two-valued mathematics) can be done in a way which does not
involve postulation of completed infinities, with the support of the device of
variable objects.

9 Some Remarks

Some things seem be be done with mirrors in Lestrade.
The type declaration dependence of postulated and defined notions is

checked only once, when they are declared. This is done by first expanding
all defined notions declared in the current world in the type and/or definition
of the proposed abstraction [because the type and definition to be recorded
for the proposed abstraction will be placed in the parent world, and cannot
depend on information which will disappear if the current world is closed],
then temporarily cutting down the current world to the argument list of the
proposed abstraction and type checking the curtailed current world itself, and
the type and/or definition of the proposed object. The type checker will then
detect any dependencies that were not taken into account in the argument
list by finding undeclared identifiers. The necessary dependence relations
between items in the parameter list are enforced magically by requiring that
parameters to the proposed abstraction appear in the order in which they
were originally declared.

There is no need to parse or type check λ-terms or dependent types in
Lestrade, because the user never enters such a term and such terms are
known to be soundly typed (mod bugs in the type checker) because they
were constructed by Lestrade itself. This is why the definition expansion

12

function does not need to have type checking as it goes.
It may seem odd that λ-terms are treated in effect as subtypes of depen-

dent types, but this is very convenient structurally and it appears that I am
making no logical assumptions of any particular moment by doing so.

There are some cautions about the parser. Arguments to abstractions
can always be separated by commas (and perhaps this should be universally
required, but so far I have not done it). However, abstractions of positive
arity may have to be followed by commas to avoid capturing terms after
them as arguments, and preceded by commas if they have arity greater than
one to avoid being read as infixes and capturing preceding terms. Terms
and argument lists may be enclosed in parentheses; note a particular hazard,
which is that if one encloses a first argument in an argument list of length
greater than one in parentheses one must enclose the entire argument list
in parentheses as well; the parser reads a parenthesis immediately following
an abstraction as opening an argument list, not a term. This is not the
case for parentheses following an abstraction being used as an infix or mixfix
operator. Notice that the display functions will always present an abstraction
of arity 2 as an infix operator [unless the first argument supplied to it is an
abstraction], although the user is free to enter it as a prefix operator. Note
that the left side of a postulate or define command is always written in
prefix order (and never with parentheses around the parameters). Parameters
like arguments to any abstraction can be comma separated, and commas will
be necessary after abstractions with positive arity and before abstractions
with arity greater than one. The parser and display functions do not
allow an abstraction whose first argument is itself an abstraction
to be read or displayed as infix or mixfix.

The display of both commands and Lestrade output (other than error
messages) on the console and in log files is indented in a way which indicates
the depth of the current world. This should be useful in determining the
structure of arguments and the scope of identifiers.

The nomenclature “current world” and “parent world” for world i+1 and
world i may need to be revisited. The objects and abstractions to which one
is currently committed are in the parent world; objects in the current world
are hypothetical objects allowed to vary freely.

13

10 Possible further features

I would like to have the ability to save a closed world with the possibility of
opening it again. This does seem to require modifying its namespace to avoid
collision with anything that is declared in the interim, or of course search-
ing saved worlds when checking identifier freshness as well as the accessible
worlds. Note that this is now implemented.

I would like to support program execution. The most natural way to do
this would seem to be to allow declaration of rewrite rules to be applied when
definitions are being expanded or type matches are being checked. The kinds
of proofs which allow rewrites are easily recognized (actually, this was a bit
tricky). This is now implemented, but see the new paper.

11 Some sample log files

I provide some samples of Lestrade interactions. These are sample executable
log files. They were run under old versions of Lestrade; I do not plan to redo
them for this document.

11.1 Russell’s paradox

Russell’s paradox. The point here is that one cannot have the constructions
comp and comp2 which implement unrestricted comprehension. This file con-
tains its own definitions of basic propositional logic notions in an older style
than the following section of logic declarations.

Lestrade execution:

clearcurrent

open

declare x obj

>> x: obj {move 2}

14

postulate P x:prop

>> P: [(x_1:obj) => (---:prop)]

>> {move 1}

close

postulate set P:obj

>> set: [(P_1:[(x_2:obj) => (---:prop)])

>> => (---:obj)]

>> {move 0}

declare x obj

>> x: obj {move 1}

declare y obj

>> y: obj {move 1}

postulate E x y:prop

>> E: [(x_1:obj),(y_1:obj) => (---:prop)]

>> {move 0}

15

declare x1 that P x

>> x1: that P(x) {move 1}

postulate comp P, x x1:that E x set P

>> comp: [(P_1:[(x_2:obj) => (---:prop)]),

>> (x_1:obj),(x1_1:that P_1(x_1)) => (---:

>> that (x_1 E set(P_1)))]

>> {move 0}

declare x2 that E x set P

>> x2: that (x E set(P)) {move 1}

postulate comp2 P, x x2: that P x

>> comp2: [(P_1:[(x_2:obj) => (---:prop)]),

>> (x_1:obj),(x2_1:that (x_1 E set(P_1)))

>> => (---:that P_1(x_1))]

>> {move 0}

declare p prop

>> p: prop {move 1}

16

declare q prop

>> q: prop {move 1}

postulate If p q:prop

>> If: [(p_1:prop),(q_1:prop) => (---:prop)]

>> {move 0}

postulate False:prop

>> False: prop {move 0}

declare pp that p

>> pp: that p {move 1}

declare rr that If p q

>> rr: that (p If q) {move 1}

postulate Mp p q pp rr:that q

>> Mp: [(p_1:prop),(q_1:prop),(pp_1:that p_1),

>> (rr_1:that (p_1 If q_1)) => (---:that

>> q_1)]

>> {move 0}

17

declare absurd that False

>> absurd: that False {move 1}

postulate Panic p absurd: that p

>> Panic: [(p_1:prop),(absurd_1:that False)

>> => (---:that p_1)]

>> {move 0}

define Not p:If p False

>> Not: [(p_1:prop) => ((p_1 If False):prop)]

>> {move 0}

define Russell x:Not E x x

>> Russell: [(x_1:obj) => (Not((x_1 E x_1)):

>> prop)]

>> {move 0}

open

declare pp2 that p

>> pp2: that p {move 2}

18

postulate Ded pp2:that q

>> Ded: [(pp2_1:that p) => (---:that q)]

>> {move 1}

close

postulate Ifproof p q Ded:that If p q

>> Ifproof: [(p_1:prop),(q_1:prop),(Ded_1:[(pp2_2:

>> that p_1) => (---:that q_1)])

>> => (---:that (p_1 If q_1))]

>> {move 0}

open

define R: set Russell

>> R: [(---:obj)]

>> {move 1}

declare R1 that E set Russell, set Russell

>> R1: that (set(Russell) E set(Russell))

>> {move 2}

19

define R2 R1:comp2 Russell, set Russell, \

R1

>> R2: [(R1_1:that (set(Russell) E set(Russell)))

>> => (---:that Russell(set(Russell)))]

>> {move 1}

define R3 R1:Mp E set Russell, set Russell, \

False R1 R2 R1

>> R3: [(R1_1:that (set(Russell) E set(Russell)))

>> => (---:that False)]

>> {move 1}

close

define R4:Ifproof E set Russell, set Russell, \

False R3

>> R4: [(Ifproof((set(Russell) E set(Russell)),

>> False,[(R1_1:that (set(Russell) E set(Russell)))

>> => (Mp((set(Russell) E set(Russell)),

>> False,R1_1,comp2(Russell,set(Russell),

>> R1_1)):that False)])

>> :that ((set(Russell) E set(Russell)) If

>> False))]

>> {move 0}

define R5:comp Russell, set Russell, R4

20

>> R5: [(comp(Russell,set(Russell),R4):that

>> (set(Russell) E set(Russell)))]

>> {move 0}

define R6: Mp E set Russell, set Russell, \

False R5 R4

>> R6: [(Mp((set(Russell) E set(Russell)),False,

>> R5,R4):that False)]

>> {move 0}

11.2 Logic declarations and proofs

This file contains all the declarations of primitive concepts and rules and
definitions of derived rules from my manual of logical style for students.

Lestrade execution:

clearall

comment The treatment of logic in my style manual

declare p prop

>> p: prop {move 1}

declare q prop

>> q: prop {move 1}

21

comment conjunction/and

postulate & p q:prop

>> &: [(p_1:prop),(q_1:prop) => (---:prop)]

>> {move 0}

declare pp that p

>> pp: that p {move 1}

declare qq that q

>> qq: that q {move 1}

postulate Andproof p q pp qq:that p & q

>> Andproof: [(p_1:prop),(q_1:prop),(pp_1:that

>> p_1),(qq_1:that q_1) => (---:that (p_1

>> & q_1))]

>> {move 0}

declare rr that p & q

>> rr: that (p & q) {move 1}

22

postulate Andelim1 p q rr:that p

>> Andelim1: [(p_1:prop),(q_1:prop),(rr_1:that

>> (p_1 & q_1)) => (---:that p_1)]

>> {move 0}

postulate Andelim2 p q rr: that q

>> Andelim2: [(p_1:prop),(q_1:prop),(rr_1:that

>> (p_1 & q_1)) => (---:that q_1)]

>> {move 0}

comment implication/if...then...

postulate -> p q:prop

>> ->: [(p_1:prop),(q_1:prop) => (---:prop)]

>> {move 0}

open

declare pp2 that p

>> pp2: that p {move 2}

postulate Ded pp2:that q

>> Ded: [(pp2_1:that p) => (---:that q)]

>> {move 1}

23

close

postulate Ifproof p q Ded:that p -> q

>> Ifproof: [(p_1:prop),(q_1:prop),(Ded_1:[(pp2_2:

>> that p_1) => (---:that q_1)])

>> => (---:that (p_1 -> q_1))]

>> {move 0}

declare ss that p -> q

>> ss: that (p -> q) {move 1}

postulate Mp p q pp ss:that q

>> Mp: [(p_1:prop),(q_1:prop),(pp_1:that p_1),

>> (ss_1:that (p_1 -> q_1)) => (---:that

>> q_1)]

>> {move 0}

comment negation (not defining it this time)

postulate ~ p:prop

>> ~: [(p_1:prop) => (---:prop)]

>> {move 0}

24

postulate ??:prop

>> ??: prop {move 0}

open

declare pp2 that p

>> pp2: that p {move 2}

postulate contra pp2:that ??

>> contra: [(pp2_1:that p) => (---:that ??)]

>> {move 1}

close

postulate Negproof p contra:that ~p

>> Negproof: [(p_1:prop),(contra_1:[(pp2_2:that

>> p_1) => (---:that ??)])

>> => (---:that ~(p_1))]

>> {move 0}

declare tt that ~p

>> tt: that ~(p) {move 1}

25

postulate Contradiction p pp tt:that ??

>> Contradiction: [(p_1:prop),(pp_1:that p_1),

>> (tt_1:that ~(p_1)) => (---:that ??)]

>> {move 0}

declare absurd that ??

>> absurd: that ?? {move 1}

postulate Panic p absurd:that p

>> Panic: [(p_1:prop),(absurd_1:that ??) =>

>> (---:that p_1)]

>> {move 0}

declare maybe that ~ ~p

>> maybe: that ~(~(p)) {move 1}

postulate Dneg p maybe:that p

>> Dneg: [(p_1:prop),(maybe_1:that ~(~(p_1)))

>> => (---:that p_1)]

>> {move 0}

26

comment basic rules for disjunction

postulate v p q:prop

>> v: [(p_1:prop),(q_1:prop) => (---:prop)]

>> {move 0}

postulate Addition1 p q pp:that p v q

>> Addition1: [(p_1:prop),(q_1:prop),(pp_1:that

>> p_1) => (---:that (p_1 v q_1))]

>> {move 0}

postulate Addition2 p q qq:that p v q

>> Addition2: [(p_1:prop),(q_1:prop),(qq_1:that

>> q_1) => (---:that (p_1 v q_1))]

>> {move 0}

comment prepare for proof by cases

declare uu that p v q

>> uu: that (p v q) {move 1}

declare r prop

>> r: prop {move 1}

27

open

declare pp2 that p

>> pp2: that p {move 2}

postulate case1 pp2:that r

>> case1: [(pp2_1:that p) => (---:that r)]

>> {move 1}

close

open

declare qq2 that q

>> qq2: that q {move 2}

postulate case2 qq2:that r

>> case2: [(qq2_1:that q) => (---:that r)]

>> {move 1}

close

28

postulate Cases p,q,uu,r,case1,case2:that \

r

>> Cases: [(p_1:prop),(q_1:prop),(uu_1:that

>> (p_1 v q_1)),(r_1:prop),(case1_1:[(pp2_2:

>> that p_1) => (---:that r_1)]),

>> (case2_1:[(qq2_3:that q_1) => (---:that

>> r_1)])

>> => (---:that r_1)]

>> {move 0}

comment derived rules for implication

open

declare notq that ~q

>> notq: that ~(q) {move 2}

postulate Ded2 notq:that ~p

>> Ded2: [(notq_1:that ~(q)) => (---:that

>> ~(p))]

>> {move 1}

declare pp2 that p

>> pp2: that p {move 2}

29

open

declare notq2 that ~q

>> notq2: that ~(q) {move 3}

define hah notq2:Contradiction p pp2, \

Ded2 notq2

>> hah: [(notq2_1:that ~(q)) => (---:that

>> ??)]

>> {move 2}

close

define hah2 pp2:Negproof ~q hah

>> hah2: [(pp2_1:that p) => (---:that ~(~(q)))]

>> {move 1}

define hah3 pp2:Dneg q hah2 pp2

>> hah3: [(pp2_1:that p) => (---:that q)]

>> {move 1}

close

define Indirect p q Ded2:Ifproof p q hah3

30

>> Indirect: [(p_1:prop),(q_1:prop),(Ded2_1:

>> [(notq_2:that ~(q_1)) => (---:that ~(p_1))])

>> => (Ifproof(p_1,q_1,[(pp2_3:that p_1)

>> => ((q_1 Dneg (~(q_1) Negproof [(notq2_4:

>> that ~(q_1)) => (Contradiction(p_1,

>> pp2_3,Ded2_1(notq2_4)):that ??)]))

>> :that q_1)])

>> :that (p_1 -> q_1))]

>> {move 0}

declare vv that ~q

>> vv: that ~(q) {move 1}

open

declare pp2 that p

>> pp2: that p {move 2}

define hmmm pp2:Mp p q pp2 ss

>> hmmm: [(pp2_1:that p) => (---:that q)]

>> {move 1}

define hmmm2 pp2:Contradiction q hmmm \

pp2 vv

31

>> hmmm2: [(pp2_1:that p) => (---:that ??)]

>> {move 1}

close

define Mt p q ss vv:Negproof p hmmm2

>> Mt: [(p_1:prop),(q_1:prop),(ss_1:that (p_1

>> -> q_1)),(vv_1:that ~(q_1)) => ((p_1 Negproof

>> [(pp2_2:that p_1) => (Contradiction(q_1,

>> Mp(p_1,q_1,pp2_2,ss_1),vv_1):that ??)])

>> :that ~(p_1))]

>> {move 0}

comment derived rules for disjunction

open

declare notq that ~q

>> notq: that ~(q) {move 2}

postulate ruleout notq:that p

>> ruleout: [(notq_1:that ~(q)) => (---:that

>> p)]

>> {move 1}

declare neither that ~(p v q)

32

>> neither: that ~((p v q)) {move 2}

open

declare notq2 that ~q

>> notq2: that ~(q) {move 3}

define problem notq2:Addition1 p q \

ruleout notq2

>> problem: [(notq2_1:that ~(q)) => (---:

>> that (p v q))]

>> {move 2}

define problem2 notq2: Contradiction \

p v q, problem notq2, neither

>> problem2: [(notq2_1:that ~(q)) => (---:

>> that ??)]

>> {move 2}

close

define problem3 neither:Negproof ~q, problem2

>> problem3: [(neither_1:that ~((p v q)))

33

>> => (---:that ~(~(q)))]

>> {move 1}

define problem4 neither:Dneg q problem3 \

neither

>> problem4: [(neither_1:that ~((p v q)))

>> => (---:that q)]

>> {move 1}

define problem5 neither: Addition2 p q \

problem4 neither

>> problem5: [(neither_1:that ~((p v q)))

>> => (---:that (p v q))]

>> {move 1}

define disaster neither:Contradiction \

p v q, problem5 neither, neither

>> disaster: [(neither_1:that ~((p v q)))

>> => (---:that ??)]

>> {move 1}

close

define Orproof p q ruleout:Dneg p v q, Negproof \

~(p v q), disaster

34

>> Orproof: [(p_1:prop),(q_1:prop),(ruleout_1:

>> [(notq_2:that ~(q_1)) => (---:that p_1)])

>> => (((p_1 v q_1) Dneg (~((p_1 v q_1))

>> Negproof [(neither_3:that ~((p_1 v q_1)))

>> => (Contradiction((p_1 v q_1),Addition2(p_1,

>> q_1,(q_1 Dneg (~(q_1) Negproof [(notq2_4:

>> that ~(q_1)) => (Contradiction((p_1

>> v q_1),Addition1(p_1,q_1,ruleout_1(notq2_4)),

>> neither_3):that ??)]))

>>),neither_3):that ??)]))

>> :that (p_1 v q_1))]

>> {move 0}

comment rules of disjunctive syllogism

declare notp that ~p

>> notp: that ~(p) {move 1}

open

declare pp2 that p

>> pp2: that p {move 2}

define qfollows pp2:Panic q, Contradiction \

p pp2 notp

>> qfollows: [(pp2_1:that p) => (---:that

>> q)]

>> {move 1}

35

declare qq2 that q

>> qq2: that q {move 2}

define qfollow2 qq2:qq2

>> qfollow2: [(qq2_1:that q) => (---:that

>> q)]

>> {move 1}

close

define Ds1 p q uu notp:Cases p q uu q, qfollows, \

qfollow2

>> Ds1: [(p_1:prop),(q_1:prop),(uu_1:that (p_1

>> v q_1)),(notp_1:that ~(p_1)) => (Cases(p_1,

>> q_1,uu_1,q_1,[(pp2_2:that p_1) => ((q_1

>> Panic Contradiction(p_1,pp2_2,notp_1)):

>> that q_1)]

>> ,[(qq2_3:that q_1) => (qq2_3:that q_1)])

>> :that q_1)]

>> {move 0}

declare notq that ~q

>> notq: that ~(q) {move 1}

36

open

declare pp2 that p

>> pp2: that p {move 2}

define notqcase1 pp2:pp2

>> notqcase1: [(pp2_1:that p) => (---:that

>> p)]

>> {move 1}

declare qq2 that q

>> qq2: that q {move 2}

define notqcase2 qq2: Panic p, Contradiction \

q qq2 notq

>> notqcase2: [(qq2_1:that q) => (---:that

>> p)]

>> {move 1}

close

define Ds2 p q uu notq:Cases p q uu p, notqcase1, \

notqcase2

37

>> Ds2: [(p_1:prop),(q_1:prop),(uu_1:that (p_1

>> v q_1)),(notq_1:that ~(q_1)) => (Cases(p_1,

>> q_1,uu_1,p_1,[(pp2_2:that p_1) => (pp2_2:

>> that p_1)]

>> ,[(qq2_3:that q_1) => ((p_1 Panic Contradiction(q_1,

>> qq2_3,notq_1)):that p_1)])

>> :that p_1)]

>> {move 0}

comment delayed Orproof2 needed

open

declare notp2 that ~p

>> notp2: that ~(p) {move 2}

postulate ruleout2 notp2:that q

>> ruleout2: [(notp2_1:that ~(p)) => (---:

>> that q)]

>> {move 1}

declare neither that ~(p v q)

>> neither: that ~((p v q)) {move 2}

open

38

declare notp3 that ~p

>> notp3: that ~(p) {move 3}

define problem notp3:Addition2 p q, \

ruleout2 notp3

>> problem: [(notp3_1:that ~(p)) => (---:

>> that (p v q))]

>> {move 2}

define problem2 notp3:Contradiction \

p v q,problem notp3, neither

>> problem2: [(notp3_1:that ~(p)) => (---:

>> that ??)]

>> {move 2}

close

define problema3 neither:Dneg p, Negproof \

~p problem2

>> problema3: [(neither_1:that ~((p v q)))

>> => (---:that p)]

>> {move 1}

define problema4 neither:Addition1 p q, \

39

problema3 neither

>> problema4: [(neither_1:that ~((p v q)))

>> => (---:that (p v q))]

>> {move 1}

define problema5 neither:Contradiction \

p v q, problema4 neither, neither

>> problema5: [(neither_1:that ~((p v q)))

>> => (---:that ??)]

>> {move 1}

close

define Orproof2 p q ruleout2:Dneg p v q, \

Negproof ~(p v q), problema5

>> Orproof2: [(p_1:prop),(q_1:prop),(ruleout2_1:

>> [(notp2_2:that ~(p_1)) => (---:that q_1)])

>> => (((p_1 v q_1) Dneg (~((p_1 v q_1))

>> Negproof [(neither_3:that ~((p_1 v q_1)))

>> => (Contradiction((p_1 v q_1),Addition1(p_1,

>> q_1,(p_1 Dneg (~(p_1) Negproof [(notp3_4:

>> that ~(p_1)) => (Contradiction((p_1

>> v q_1),Addition2(p_1,q_1,ruleout2_1(notp3_4)),

>> neither_3):that ??)]))

>>),neither_3):that ??)]))

>> :that (p_1 v q_1))]

>> {move 0}

40

open

declare notp2 that ~p

>> notp2: that ~(p) {move 2}

define samenotp notp2:notp2

>> samenotp: [(notp2_1:that ~(p)) => (---:

>> that ~(p))]

>> {move 1}

close

define Excmid p:Orproof2 p, ~p, samenotp

>> Excmid: [(p_1:prop) => (Orproof2(p_1,~(p_1),

>> [(notp2_2:that ~(p_1)) => (notp2_2:that

>> ~(p_1))])

>> :that (p_1 v ~(p_1)))]

>> {move 0}

11.3 Working on Landau. . .

Landau up to proposition 2. This file is preceded by a copy of the logical
declarations given above (previous versions contained embedded duplicates
of earlier forms of those logical declarations).

Lestrade execution:

41

clearcurrent

comment we assume the totality of natural numbers

postulate Nat:type

>> Nat: type {move 0}

declare x in Nat

>> x: in Nat {move 1}

declare y in Nat

>> y: in Nat {move 1}

open

declare z in Nat

>> z: in Nat {move 2}

postulate P z:prop

>> P: [(z_1:in Nat) => (---:prop)]

>> {move 1}

42

close

postulate = x y:prop

>> =: [(x_1:in Nat),(y_1:in Nat) => (---:prop)]

>> {move 0}

declare eq that = x y

>> eq: that (x = y) {move 1}

declare px that P x

>> px: that P(x) {move 1}

postulate subs x y P, eq px:that P y

>> subs: [(x_1:in Nat),(y_1:in Nat),(P_1:[(z_2:

>> in Nat) => (---:prop)]),

>> (eq_1:that (x_1 = y_1)),(px_1:that P_1(x_1))

>> => (---:that P_1(y_1))]

>> {move 0}

open

open

declare u in Nat

43

>> u: in Nat {move 3}

postulate P1 u:prop

>> P1: [(u_1:in Nat) => (---:prop)]

>> {move 2}

close

declare px1 that P1 x

>> px1: that P1(x) {move 2}

postulate Eq P1, px1:that P1 y

>> Eq: [(P1_1:[(u_2:in Nat) => (---:prop)]),

>> (px1_1:that P1_1(x)) => (---:that P1_1(y))]

>> {move 1}

close

postulate Eqproof x y Eq:that = x y

>> Eqproof: [(x_1:in Nat),(y_1:in Nat),(Eq_1:

>> [(P1_2:[(u_3:in Nat) => (---:prop)]),

>> (px1_2:that P1_2(x_1)) => (---:that

>> P1_2(y_1))])

>> => (---:that (x_1 = y_1))]

44

>> {move 0}

open

open

declare u in Nat

>> u: in Nat {move 3}

postulate P2 u:prop

>> P2: [(u_1:in Nat) => (---:prop)]

>> {move 2}

close

declare refl1 that P2 x

>> refl1: that P2(x) {move 2}

define refl2 P2, refl1:refl1

>> refl2: [(P2_1:[(u_2:in Nat) => (---:prop)]),

>> (refl1_1:that P2_1(x)) => (---:that

>> P2_1(x))]

>> {move 1}

45

close

define Refl x:Eqproof x x refl2

>> Refl: [(x_1:in Nat) => (Eqproof(x_1,x_1,[(P2_2:

>> [(u_3:in Nat) => (---:prop)]),

>> (refl1_2:that P2_2(x_1)) => (refl1_2:

>> that P2_2(x_1))])

>> :that (x_1 = x_1))]

>> {move 0}

open

declare symm1 that = x y

>> symm1: that (x = y) {move 2}

open

declare u in Nat

>> u: in Nat {move 3}

define P3 u:=y u

>> P3: [(u_1:in Nat) => (---:prop)]

>> {move 2}

46

define P4 u:=u x

>> P4: [(u_1:in Nat) => (---:prop)]

>> {move 2}

close

define symm2 symm1: subs x y P4, symm1, \

Refl x

>> symm2: [(symm1_1:that (x = y)) => (---:

>> that (y = x))]

>> {move 1}

close

declare symm3 that = x y

>> symm3: that (x = y) {move 1}

define symm x y symm3:symm2 symm3

>> symm: [(x_1:in Nat),(y_1:in Nat),(symm3_1:

>> that (x_1 = y_1)) => (subs(x_1,y_1,[(u_2:

>> in Nat) => ((u_2 = x_1):prop)]

>> ,symm3_1,Refl(x_1)):that (y_1 = x_1))]

>> {move 0}

declare z in Nat

47

>> z: in Nat {move 1}

open

declare trans1 that = x y

>> trans1: that (x = y) {move 2}

declare trans2 that = y z

>> trans2: that (y = z) {move 2}

open

declare u in Nat

>> u: in Nat {move 3}

define P5 u:= x u

>> P5: [(u_1:in Nat) => (---:prop)]

>> {move 2}

close

define trans3 trans1 trans2:subs y z P5, \

48

trans2 trans1

>> trans3: [(trans1_1:that (x = y)),(trans2_1:

>> that (y = z)) => (---:that (x = z))]

>> {move 1}

close

declare t1 that =x y

>> t1: that (x = y) {move 1}

declare t2 that =y z

>> t2: that (y = z) {move 1}

define trans x y z t1 t2:trans3 t1 t2

>> trans: [(x_1:in Nat),(y_1:in Nat),(z_1:in

>> Nat),(t1_1:that (x_1 = y_1)),(t2_1:that

>> (y_1 = z_1)) => (subs(y_1,z_1,[(u_2:in

>> Nat) => ((x_1 = u_2):prop)]

>> ,t2_1,t1_1):that (x_1 = z_1))]

>> {move 0}

postulate 1: in Nat

>> 1: in Nat {move 0}

49

postulate succ x:in Nat

>> succ: [(x_1:in Nat) => (---:in Nat)]

>> {move 0}

postulate notone x: that ~ = succ x 1

>> notone: [(x_1:in Nat) => (---:that ~((succ(x_1)

>> = 1)))]

>> {move 0}

declare samesucc1 that = succ x succ y

>> samesucc1: that (succ(x) = succ(y)) {move

>> 1}

postulate samesucc x y samesucc1:that = x \

y

>> samesucc: [(x_1:in Nat),(y_1:in Nat),(samesucc1_1:

>> that (succ(x_1) = succ(y_1))) => (---:

>> that (x_1 = y_1))]

>> {move 0}

open

declare u in Nat

50

>> u: in Nat {move 2}

postulate Indp u:prop

>> Indp: [(u_1:in Nat) => (---:prop)]

>> {move 1}

close

declare basis that Indp 1

>> basis: that Indp(1) {move 1}

open

declare u in Nat

>> u: in Nat {move 2}

declare indhyp that Indp u

>> indhyp: that Indp(u) {move 2}

postulate indstep u indhyp:that Indp succ \

u

51

>> indstep: [(u_1:in Nat),(indhyp_1:that

>> Indp(u_1)) => (---:that Indp(succ(u_1)))]

>> {move 1}

close

postulate Induction x Indp, basis indstep: \

that Indp x

>> Induction: [(x_1:in Nat),(Indp_1:[(u_2:in

>> Nat) => (---:prop)]),

>> (basis_1:that Indp_1(1)),(indstep_1:[(u_3:

>> in Nat),(indhyp_3:that Indp_1(u_3))

>> => (---:that Indp_1(succ(u_3)))])

>> => (---:that Indp_1(x_1))]

>> {move 0}

comment try to prove Satz 1

define =/= x y: ~(x=y)

>> =/=: [(x_1:in Nat),(y_1:in Nat) => (~((x_1

>> = y_1)):prop)]

>> {move 0}

open

declare hyp that x =/= y

>> hyp: that (x =/= y) {move 2}

52

open

declare counterhyp that succ x = succ \

y

>> counterhyp: that (succ(x) = succ(y))

>> {move 3}

define oops counterhyp:Contradiction \

x=y, (samesucc x y counterhyp), hyp

>> oops: [(counterhyp_1:that (succ(x)

>> = succ(y))) => (---:that ??)]

>> {move 2}

close

define conc hyp: Negproof succ x = succ \

y, oops

>> conc: [(hyp_1:that (x =/= y)) => (---:

>> that ~((succ(x) = succ(y))))]

>> {move 1}

close

define satz1 x y:Ifproof x=/=y, succ x =/= \

succ y,conc

53

>> satz1: [(x_1:in Nat),(y_1:in Nat) => (Ifproof((x_1

>> =/= y_1),(succ(x_1) =/= succ(y_1)),[(hyp_2:

>> that (x_1 =/= y_1)) => (((succ(x_1)

>> = succ(y_1)) Negproof [(counterhyp_3:

>> that (succ(x_1) = succ(y_1))) =>

>> (Contradiction((x_1 = y_1),samesucc(x_1,

>> y_1,counterhyp_3),hyp_2):that ??)])

>> :that ~((succ(x_1) = succ(y_1))))])

>> :that ((x_1 =/= y_1) -> (succ(x_1) =/=

>> succ(y_1))))]

>> {move 0}

define theprop x:succ x =/= x

>> theprop: [(x_1:in Nat) => ((succ(x_1) =/=

>> x_1):prop)]

>> {move 0}

open

declare u in Nat

>> u: in Nat {move 2}

declare xx that theprop u

>> xx: that theprop(u) {move 2}

54

define yy u:satz1 succ u u

>> yy: [(u_1:in Nat) => (---:that ((succ(u_1)

>> =/= u_1) -> (succ(succ(u_1)) =/= succ(u_1))))]

>> {move 1}

define zz u xx:Mp succ u =/= u, succ succ \

u =/= succ u, xx, yy u

>> zz: [(u_1:in Nat),(xx_1:that theprop(u_1))

>> => (---:that (succ(succ(u_1)) =/= succ(u_1)))]

>> {move 1}

define zz2 u xx:Mp theprop u, theprop \

succ u, xx, yy u

>> zz2: [(u_1:in Nat),(xx_1:that theprop(u_1))

>> => (---:that theprop(succ(u_1)))]

>> {move 1}

close

define satz2 x:Induction x, theprop, notone \

1, zz2

>> satz2: [(x_1:in Nat) => (Induction(x_1,theprop,

>> notone(1),[(u_2:in Nat),(xx_2:that theprop(u_2))

>> => (Mp(theprop(u_2),theprop(succ(u_2)),

>> xx_2,(succ(u_2) satz1 u_2)):that theprop(succ(u_2)))])

>> :that theprop(x_1))]

>> {move 0}

55

define badsatz2 x:Induction x,theprop,notone \

1,zz

>> badsatz2: [(x_1:in Nat) => (Induction(x_1,

>> theprop,notone(1),[(u_2:in Nat),(xx_2:

>> that theprop(u_2)) => (Mp((succ(u_2)

>> =/= u_2),(succ(succ(u_2)) =/= succ(u_2)),

>> xx_2,(succ(u_2) satz1 u_2)):that (succ(succ(u_2))

>> =/= succ(u_2)))])

>> :that theprop(x_1))]

>> {move 0}

comment not bad any more after bugs fixed...

comment existence and uniqueness stuff -- definition of "the"; quantifiers

open

declare n in Nat

>> n: in Nat {move 2}

postulate Uprop n:prop

>> Uprop: [(n_1:in Nat) => (---:prop)]

>> {move 1}

close

56

postulate the Uprop:in Nat

>> the: [(Uprop_1:[(n_2:in Nat) => (---:prop)])

>> => (---:in Nat)]

>> {move 0}

open

declare m in Nat

>> m: in Nat {move 2}

declare n in Nat

>> n: in Nat {move 2}

declare mm that Uprop m

>> mm: that Uprop(m) {move 2}

declare nn that Uprop n

>> nn: that Uprop(n) {move 2}

postulate allthesame m n mm nn:that m=n

57

>> allthesame: [(m_1:in Nat),(n_1:in Nat),

>> (mm_1:that Uprop(m_1)),(nn_1:that Uprop(n_1))

>> => (---:that (m_1 = n_1))]

>> {move 1}

close

declare w in Nat

>> w: in Nat {move 1}

declare ww that Uprop w

>> ww: that Uprop(w) {move 1}

postulate Theproof Uprop, allthesame, w ww: \

that Uprop the Uprop

>> Theproof: [(Uprop_1:[(n_2:in Nat) => (---:

>> prop)]),

>> (allthesame_1:[(m_3:in Nat),(n_3:in Nat),

>> (mm_3:that Uprop_1(m_3)),(nn_3:that

>> Uprop_1(n_3)) => (---:that (m_3 = n_3))]),

>> (w_1:in Nat),(ww_1:that Uprop_1(w_1))

>> => (---:that Uprop_1(the(Uprop_1)))]

>> {move 0}

58

